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Exactly Solvable X Y  Model of the 
Spin Peierls Transition 
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The exact solution of the problem of the ground state of the XY-spin system on 
a deformed chain is found. At finite magnetization m it is characterized by the 
double periodic structure and has a finite-band spectrum of spin excitations. At 
m ~ 0 the phase transition from the incommensurate into the dimerized state is 
accompanied by the soliton lattice formation. 
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1. INTRODUCTION 

A common property of quasi-one-dimensional systems is formation of 
various periodic and quasiperiodic superstructures. A possible formation of 
the so-called charge or spin density waves and lattice superstructures 
depends on the character of interactions in the system. Their formation is 
accompanied by various physical effects: appearance of gaps in the initial 
electron spectra, appearance of new soliton-type excitations and collective 
modes. Most sophisticated phenomena are due to commensurability effects 
resulting from the interaction of a superstructure with the original periodic 
structure (see, e.g., the review in Ref. 1). 

There are two limit cases in the phenomena of lattice superstructure 
formation due to the interaction of lattice deformations with an electron 
subsystem~ If the direct electron-electron interaction is weak, there is the so- 
called Peierls effect, (2) giving rise to formation of the 2k F superstructure (k F 
is the Fermi momentum for free electrons) and to the appearance of gaps in 
the spectra of one-particle states and spin excitations. (Detailed discussion of 
this problem is in Ref. 3.) In the strong interaction limit when the elec- 
tron-electron repulsion energy per a site v exceeds the value of the transfer 
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integral between the sites t (v >> t), charge and spin degrees of freedom are 
split. Charge excitations are described by the equivalent system of spinless 
fermions <4) and they correspond to the Peierls effect with the doubled wave 
vector. This effect generates the both theoretically and experimentally known 
problem of the 4k F anomaly. <5) Spin excitations are described by the 
Hamiltonian of the Heisenberg antiferromagnet with the exchange integral 
3 ~ t2/v. 

It is known that a quasi-one-dimensional antiferromagnet on a lattice, 
subject to deformations, is unstable with respect to displacements of its sites, 
modulating the exchange integrals. This instability, called the spin Peierls 
transition, ~6) has been the subject of numerous theoretical and experimental 
studies (see the review in Ref. 7). It has been established that in the absence 
of magnetic field, dimerization of the chain, accompanied by the transition of 
the system into the singlet state, takes place, i.e., is accompanied by the 
appearance of a gap in the magnon spectrum. 

There is probably a certain critical value of the magnetic field H C above 
which a finite magnetic moment m emerges. It is most important that this 
transition belongs to the commensurate-incommensurate type: at IHI > H c 
m 4:0 there is a soliton superstructure with the mean period ~m -1. As a 
result, the spin lattice becomes nonperiodic and there appear numerous fine 
phenomena due to the commensurability effect. 

The existing researches of the spin Peierls transition have been 
performed within the continual models where these effects have been 
neglected. Therefore it is of interest to investigate an exactly solvable discrete 
model of the spin Peierls transition. The model we consider below in essence 
coincides with the discrete Peierls model we have studied previously in 
Refs. 8 and 9. As should be expected, an exactly solvable model is a system 
of X Y  spins per j U  sites of the lattice x n. The spin interaction is described by 
the standard Hamiltonian 

~ g e ~ Z  x x r Y 3~(S~S,+1 + S,S ,+I)  
n (1)  

~n~-~o(Xn+l--Xn), x , = n a + u  n, n =  1, 2,..., JU 

Values of the exchange integrals are determined by the spacing between the 
neighboring sites and, consequently, depend on deformations of the 
lattice un. 

Treating the coordinates of the lattice x ,  as classical variables, we must 
define the states of the system from the condition of the minimum of the 
energy functional of the system 

~ / W s =  Ws{xn} = SpJ /~+  ~ Vn{X,} (2) 
n 

where V{Xn} is the energy of the elastic interaction between lattice sites. 
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By means of the Jo rdan-Wigner  t ransformation,  the system of X Y  spins 
is reduced to a system of spinless fermions, characterized by amplitudes of  
the wave functions lfin on the sites x . .  As a result, (2) becomes equivalent to 
the functional 

~ W =  W{x.} = F E + V{x.} (3) 
E ~ t  

where E = E{x.} are eigenvalues of  the difference Schr6dinger equation 

C n lfi n + 1 -~ C n -- l lfi n --1 = E l f i n ,  C n = �89 (4) 

with the periodicity conditions 

l f i . + ~ =  l f i . ,  c . + y =  c.  (4a) 

The functional (3), (4) should be considered at a given mean value of 
magnetizat ion 

1 N~ (SZ) ' ( S Z ) _  1 V lfi*(E) ~,.(E) (5) r n =  :.., 2 ~" 
E < U  n 

The respective magnetic field is determined by the relation 

n = ~ Wo/Srn 

where 
W 0 = min W{x.} 

{xnl 

It is clear that /z  = - - H  serves as the chemical potential. 
In Refs. 8 and 9 it has been shown that the ext remum problem for 

functionals of  the (3), (4) types admits an exact solution if we confine 
ourselves to a special functional relation between the potential energy V{x.} 
and the set 

Crt = C(Xn +1 - - X n )  = exp(x.  - x .+  1) (6) 

Namely ,  the functional V{x n} should be represented as a sum of  a finite or 
infinite number  of  even Toda  integrals I2a: 

I 

V{Xn} = ~ '  K,~/2,~{c.} (7) 
a~=0 

I 0 = In On, 12 = ~ C2n 
7 

1 2 2 1 4 14 ( c . c ._  1 + . . . .  

(8) 
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In the problem under study the functionals I n occur as coefficients of the 
asymptotic expansion of the quasimomentum p(E)  for solutions of the 
spectral problem (4), (4a) 

ip(E) = +(in E 7 Io -- I2E  -2 . . . .  ) (9) 

Confining ourselves to the interaction of spins with their nearest 
neighbors, we must retain in the sum over a in (7) only the first two terms. 
In the thermodynamic limit we obtain the energy functional in the form 

W--- - - I  f E dp - P I  0 + ~cI2, P = -Ko,  K = K 2 (10) 
7~ E < u 

where the integration is performed over all occupied allowed bands. The 
functional (9) varies at given pressures P and an average number of fermions 
per an atom p 

1 _]_1 f 
P = T  - m =  2~r e< .  dp (11) 

In (10) where P is regarded as pressure, it has been used that according to 
(6) and (8) the quantity 

- J U I  0 = x n - x 0 = JYa (12) 

is the total length of the chain. 
The method of solving the extremum problem for the functionals (10) or 

in a more general form for the functionals (3), (7), is grounded on the study 
of their variations in the functional space I n. Previously it has been 
shown (9'1~ that all the extrema of W belong to the class of the so-called 
finite-band potentials of the Schr6dinger operators (4), the number of 
allowed bands q + 1 not exceeding 4 l -  1, where 2l is a number of terms in 
the sum of formula (7). It has also been proved that the chemical potential is 
always in one of the forbidden bands. 

The wave functions ~G and the potentials e n are completely determined 
by the values of the lower E l ,  E 3 ..... E2q+l and upper E2, E 4,..., E2q + 2 boun- 
daries of the allowed bands as well as by the points 7i in each of the 
forbidden bands El,. ~ 7t ~ Eli+ 1 of the spectrum. It is important that values 
of the functional W depend only on Ei but not on Yi. An arbitrary choice of 
the values of 7i at fixed E i leads to the existence of zero gapless modes. 

The boundaries of the bands determine the so-called hyperelliptical 
Riemannian surface F 

q + l  

y2 =R(EZ),  R ( c ) =  ~ I  ( e - -E~)  (13) 
k = l  
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The latter in its turn determines the Riemann 0 function in terms of q 
complex variables by which it is possible to express the wave functions ~,, 
and potentials e, .  The method of constructing the 0 functions for the surface 
F in application to the discrete equation (4) is in detail described in Ref. 11. 
All the necessary data are in brief given in Ref. 10. The quasimomentum 
p(E) ,  the asymptotic expansion of which has been given above in (9), is 
introduced on the surface F by means of the relation 

E q + r z E  q-a + ... 
i dp - [R (E2)] 1/2 dE (14) 

The coefficients r 1,... are determined from the physically evident conditions 
that the integrals of the quasimomentum over the forbidden bands are zero. 

Calculation of quasimomentum variations (see Ref. 9) yields the mutual 
independence of the first q integrals Iza. As a result, the extremum problem 
for the functionals is reduced to an algebraic system of equations. 

Apart from the above-mentioned general assertions, we have a 
possibility of calculating all the necessary physical quantities. Below we shall 
give the results of these calculations. 

2. PHYSICAL QUANTITIES 

In the ground state of the model under study at m 4:0 the lattice 
possesses an incommensurate double periodic structure. It is possible to 
regard it as a superposition of two lattices for odd and even sites, periodic 
with the period T = 1/] m [. Displacements of the sites are 

1 1 04( (n  - -  no - -  1 ) I m l  + ( - - 1 ) n / 4 )  
u " = u ( n - n ~  no4((n n o + l ) l m l + ( - 1 ) ~ / 4 )  (15) 

04(~) : 04(~, ~'), r = i K ' ( k ) / K ( k )  

Here and henceforth we follow Ref. 13 in designations for the elliptical 
functions and 0 functions. The parameters r or k are defined below. The 
deformation (15) is accompanied by the spin density modulation 

1 K'(k) c~ u(n-no)  ( 1 6 )  S Z =  m 
81ml K ( k )  ~n o 

Note that in formulas (15) and (16) n o is an arbitrary, generally speaking, 
noninteger, so that the ground state is continuously degenerate with respect 
to the superstructure translation despite the absence of the translational 
invariance symmetry in the energy functional. This translational degeneracy 
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corresponds to the above-mentioned arbitrary choice of the parameters Yi. 
This circumstance is closely associated with the exact integrability of the 
model. 

The parameters r = r(m) and k = k(m) in (15), (16) are determined by 
one of the two self-consistency conditions: 

(a) At a given mean intersite spacing a 

K(r) 0~(0) 
cn(u, k) 0](m) = 2rcx~ = 2o 1, E = e-a (17) 

where 
u = 2 I ml K(k), r = dn(u, k) 

(b) At a given pressure P 

snZ(u, k) dn2(u, k) E(r) ] 
P = , , _L . .  1+  --2 (18) 

2~r x cn2(u, k) K(r) ] 

Equations (17) and (18) can be interpreted as a parametric equation of 
state P = P(a, m). Note that P > 0 always. The energy of the ground state 
W 0 is determined by the expression 

W o = Wo(P, m) = K2(r) [ 
sn2(u, k) dnZ(u, k) 

4n 2 1 + cn2(u, k) 

04(~ --Jml) j z(r) s n ( u , k )  , 1 . 

4K(r )  K(k) 0,(I ]m[) 
+Pa (19) 

The spectrum (4) at m 4: 0; J: 1/2 in accordance with the situation discussed 
in Sec. 1, consists of three allowed bands ( - E  3,-E2),  (--El,El) ,  and 
(E2, E3) (see Fig. la). The magnitude of the magnetic field H is in one of the 
forbidden bands ( -Ez , -E l )  or (El, Ez) at m > 0 or m < 0, respectively. The 
edges of the bands are determined by the relations 

E 3 = 2e 0,(m) 84( 1 --]mJ) 
8,(0) 84(1/2 ) 

(20) 
E 2 E 1 k' 
E3 = sn(u, k), E 2 - dn(u, k) 

Of greatest interest is the behavior of the physical quantities in the vicinity of 
the commensurate-incommensurate transition, i.e., at m ~ 0. In the case of 
weak coupling this region is 

Iml ~ exp(-1/2o), 20 = 1/27cxE,~ 1 (21) 
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Fig. 1. The spectrum of Fermion's eigenvalues. 

In the limit m ~ 0 formulas (15), (16) yield a dilute lattice of solitons each 
of which shifts the dimerization structure by a half-period. In the region of a 
soliton only each second site participates in the deformation of the lattice 
and spin density, e.g., 

1 c h [ Y - ' ( n - n  o - 1/2)] 
uz, , = ~ - I n  c h [ Y - i ( n  -- n o + 1/2)] (22) 

Then 

b / Z n +  1 ~--- const 

s Z n -  m = � 8 8  n o + �89 - t h [ Y - ' ( n -  n 0 -  �89 

S ~ (SZ, -- m)  = 1/2, z S2n+l = m  
n 

(23) 

Formula  (23) shows that  each soliton has only one 1/2 spin, distributed over 
either even or odd sites. 

The width parameter  of  the soliton Y is found from the equation 

r = 1 / c h ( Y  -1)  (24) 

The self-consistency conditions (16), (17) in the limit m--+0 can be 
simplified if we neglect all the terms ~ e x p ( - 4 / Y  ]ml). As a result, we get 
the following equations for the quanti ty r: 

rK(r) ( l -~ r' ) 2'm' 1 
- -  = 2;,r~ce -a = -  

~-0 (25) 

r 2 + r ' Z =  1 

KZ(r)(2 -- r 2) -- 2E(r)  K(r) = 2n2xP (26) 
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and the expression for the energy 

Wo(P,m)-  K2(r) [ 2 - r 2 - 4 ~ +  4r' lml] + x (27) 

It follows from formulas (25)-(27) that with accuracy up to exponentially 
small terms, the parameters of the system are uniquely (irrespective of m) 
determined by the pressure. Then the length and energy are linear with 
respect to I ml, i.e., with respect to soliton concentration. The cusp in the 
energy dependence on m leads to the appearance of the critical field H e. For 
the energy at a given magnetic field H we have 

W(H) = Wo(m ) - mH 

= W(O) + 2E s I m [ - n m  + O(e -4/S~lml) (28) 

where E S is the soliton energy. Note that the spin of each soliton equals 1/2. 
From (28) we get that at IHI > Hc = 2Es the quantity m is determined 

by the dependence 
1 

m ~ Y -  1 in - -  (29) 
H - H e  

This behavior is typical of the commensurate-incommensurate transitions in 
classical systems. ~14) From formulas (25)-(27) we can find the value of the 
critical magnetic field 

~W~ m=0 r '  1 + r '  ~3m -- H~ ~ ~ KE(r) -- 2P in - - r  (30) 

In the weak coupling limit it follows from (30) that 

H~__~Ao = 16zc gexp( -1 /~~  

where A 0 ~ E 2 [z=0 is a half-width of the gap in the fermion spectrum due to 
the spin Peierls transition in the absence of the magnetic field. 

3. PROPERTIES OF NONINTEGRABLE MODELS 

The character of the spin Peierls transition noticeably changes if the 
exact integrability of the model is somehow violated. It is sufficient, for 
instance, as has already been done previously, ~12) to add to the elastic energy 
a small term of the form 

~nn.t = ;t ~ c , ,  ) . -~0 (31) 
n 
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Then already in the linear approximation with respect to ). the dependence of  
the energy on the mean spin (per an ion) m will become a function, discon- 
tinuous in all the points. More exactly (cf. Ref. 14), the value of  the energy 
at "rat ional"  moments 

m = l/n 

where l and n are integers, will differ by a finite value from the energy in a 
close irrational point. The value of  the jump is dependent on l/n. If  the latter 
is not too small, i.e., the corresponding central band in Fig. 1 is not too 
narrow, we believe that there is an almost sinusoidal spin density wave. Its 
pinning energy at n-~ oo (but finite l /n)  will be exponentially low (12) 

~ i n .  ~ 2e-" (32) 

This means that the discontinuous function is differentiable in all irrational 
m. The respective dependence of  the moment  on the field m ( H )  will be given 
by the curve with a small number of  horizontal regions, corresponding to the 
pinning under small values of  n = 3, 4, 5 ..... 

When the value of  the mean moment  is close to 1/2, the middle band in 
Fig. 1 vanishes, and the charge density wave becomes a soliton lattice. Then 
the pinning energy loses its exponential dependence on n, and the curve 
becomes a typical "devil 's staircase" (see, e.g., Ref. 1). Finally, when the 
width of  the central band is substantially smaller than the perturbation 
energy 2 (32), a chaotic behavior will be observed in the system. (12) We shall 
not dwell upon this regime, referring all those interested to the above- 
mentioned review by P. Bak. (1) 
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